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LETTER TO THE EDITOR 

Many-body effects on diffusion-controlled dislocation 
loop coarsening 

Yoshihisa Enomoto 
Department of Physics, Faculty of Science, Nagoya University, Nagoya 464-01, Japan 

Received 11 September 1989 

Abstract. We study a diffusion-controlled coarsening process of dislocation loops. Using an 
analogy to particle coarsening (Ostwald ripening), we consider cooperative effects among 
loops occurring via the diffusion field. Applying a statistical mechanical method developed 
by us and our colleagues to this phenomenon, we discuss many-body effects on the form of 
loop size distribution function and the coarsening rate. 

Dislocation loop coarsening has been studied recently by Burton and Speight (BS) [1] 
using an analogy with particle coarsening [2]. This coarsening process proceeds by the 
growth of larger loops at the expense of smaller ones, with the total loop area being 
conserved. BS have, however, ignored the cooperative effects among dislocation loops 
occurring via the diffusion field, which, as has been pointed out, plays an important role 
in particle coarsening [3].  To study such effects systematically, we and our colleagues 
have recently developed a statistical mechanical method [4]. Using this method, we have 
discussed many-body effects on the asymptotic behaviour of particle coarsening [5]. 
Thus, in the present letter, we apply this method to dislocation loop coarsening and 
study such effects on this phenomenon. 

We consider a collection of N loops with radii Ri(t) centred at X i .  In the following 
discussion, we assume [l] that (i) the dislocation loop is of vacancy type, completely 
circular and immobile; (ii) there is no external sink and source, such as a defect in the 
system: thus, the total loop area is conserved; (iii) the stacking fault energy per unit area 
is so small as to be negligible; and (iv) the loop radius R is sufficiently large that the 
exponential term may be expanded in the form exp(a/R) = 1 + a/R, where a is defined 
in (4) below. 

To obtain the growth equation of dislocation loops, we must first solve the diffusion 
equation for vacancy concentration C(r,  t )  at position r and time t 

(a/dt)C(r, t )  = D V2C(r ,  t )  (1) 
subject to the boundary conditions 

C ( r i ,  t)  = Ceq(l + a / R i )  
C(r,  t )  + C(t) a s I r J + x  

with 
a = bS2G/kB T (4) 

where D is the vacancy diffusion coefficient, ri the position vector on the ith loop, C,, 
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the thermal equilibrium concentration, and c(t) the average concentration. Here b is 
the atomic size, 52 (=b3)  the atomic volume, kBT the thermal energy and G the shear 
modulus. These equations, with the stationary state approximation dC/dt = 0, have 
already been solved for particle coarsening by means of a Green function method and 
provided the growth equation for particles [6]. A similar analysis leads to the growth 
equation for the ith loop: 

(d/dt)nRf = 2naB( i )  ( 5  ) 

with 

a = 2b2aC,, D (7)  

Here the critical radius R,(t) is determined from the loop area conservation: 

N ( 0  

B( i )  = 0 
i =  1 

(9) 

where N(t)  is the total number of loops at time t. 
Equation ( 5 ) ,  together with equations (6)-(9), is a starting point for studying the 

coarsening process. This equation consists of two terms. The first two terms in (6) are 
the mean-field terms, which were discussed by BS. The last term in (6) represents the 
spatial interaction between loops via the diffusion field. As was pointed out in [4], such 
systems have two kinds of characteristic length. One is the average loop radius R(t). The 
other is the correlation length, L(t) ,  within which two loops are correlated via the 
diffusion field, and is defined by 

where n(t) is a number density of loops at time t .  We assume that the number density 
n(t) is small so that R(t)/L(t)  = (2Q/m2(t))’/’ < 1, where Q is the area fraction defined 
by Q = bnCiRf/Vwhere the system volume is V, andm2(t) is the second moment defined 
bym2(t) = Xi(Rl/l?(t))2/N(t) .  Herewenotethat theareafraction Qistime-independent, 
from (9). These equations (5)-(9) are formally identical to those for particle coarsening. 
Thus, the intractable last term in (6) is expected to be renormalised to the first one using 
the same systematic expansion in powers of Q1/’ as in [4]. 

Now we define the loop size distribution function F(R, t )  per unit volume as 

where ( , , .>  denotes the average over the initial ensemble. Differentiating F(R, t )  with 
respect to the time tand using ( 5 )  leads to the well known BBGKY-like hierarchy equations 
for the distribution functions. The systematic expansion in powers of Q’’’ is then 



Letter to ihe Editor 9787 

performed, to truncate such hierarchy equations [4]. As a result, we obtain the kinetic 
equation for F(R, t ) ,  up to order e’/’: 

(a/at)F(R, t )  + a(a/aR)(B(x,  Q)F(R,  t ) / R )  = 0 (12) 

with 

B(x,  Q )  = x - 1 - (2Q/m2(t))”*x(m2(t) - X )  (13) 

m2( t )  = [ (R /R( t ) )*F(R ,  t )  dR/jb; F(R, t )  dR 

where the average radius R(t)  is defined by 

R(t) = J x  RF(R, t )  d R / I m  F(R, t )  dR.  
0 0 

The relative loop radius x is defined by x = R/R( t ) ,  and the loop number density n(t)  is 
defined by 

n(t) = F(R, t )  d R. I 
The first two terms in (13) are the same as those of the BS theory. On the other hand, the 
last term in (13) denotes the renormalised cooperative effects among loops, which have 
been studied by none of the previous authors. Further details of the present derivation 
will be published separately. 

Equations (12)-(14) are formally analogous to those of the BS theory and of the 
particle coarsening [5] .  Hence, we shall quote only the final results, omitting inter- 
mediate calculations. In general, the asymptotic form of the distribution is given by 

F(R, t )  = (n( t ) /R(t))h(x)  ( 1 5 )  

where h(x)  is a relative loop size distribution function and is time-independent, satisfying 
a normalisation condition .I”; h(x)  dx = 1. In terms of h(x) ,  the second moment m2 is 
redefined as m2 = x2h(x)  dx  and thus becomes time-independent. The time-depen- 
dent behaviour of the system is described by 

R(t)’ - R(0)’ = (@/2)K(Q)t  (16) 

n(t)  = (Q/nm*b)R(t)-* (17) 

F(R, t )  = ( Q / ~ “ b ) h ( x ) R ( t ) - ~  (18) 

K ( Q )  = (d/2em2 - 1)’ + 4-. 
where R(0) is the initial average radius and K(Q)  the coarsening rate given by 

(19)  

From these results we find that the average loop radius grows as t”’ and the number 
density of loops decays as t-’. These temporal power laws are identical to those of the 
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Figure 1. The second moment, m2, as a function 
of the area fraction, Q. 

Figure2. The coarsening rate, K ( Q ) ,  and the cut- 
off, x,, as a function of the area fraction, Q. 
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Figure 3. The relative loop_size distribution func- 
tion h(x)  against x =  R/R for Q = 0 (the BS 
theory), 0.05 and 0.1. 

BS theory. Thus the many-body effects are not found to alter the qualitative behaviour 
of the temporal power laws. Finally we obtain the analytic form of h(x): 

Ax(x, - x)-'-' exp[-zx, / (xc  - x ) ]  for x < x,  

for x 5 x,  
(20) h(x)  = 

where the cut-off x, is given by 

X ,  = 2(1 - m ) / ( K ( Q >  - 4 V m )  

withA = zx; exp(z) and z = 2 K ( Q ) / ( K ( Q )  - 4 m ) .  Here we should remark that 
the second moment m2 must be determined self-consistently for each value of Q. In the 
dilute limit Q -+ 0, we have K ( Q )  = 1 and x, = 2 from (19) and (21), and thus we can 
recover the BS theory. Numerical results for m2, x, and K ( Q )  and h(x) are shown as a 
function of Q in figures 1-3, respectively. 

In summary, we have studied many-body effects among dislocation loops on coar- 
sening by using a systematic method of expansion in powers of Q'I'. With increasing 
area fraction Q, the coarsening rate K( Q) increases and the relative loop size distribution 
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function h(x)  broadens, while the temporal power laws still hold. These results are 
similar to those for particle coarsening. We should note that even if Q is small, the 
dependence on Q of K( Q) and h(x)  is remarkable. For reliable studies of loop coarsening 
we must discuss the effects of the higher-order corrections in the &'/*-expansion as well 
as the other coarsening mechanism. Such a study is now under way. The results, together 
with acomparison of the present results with experiment, will be published in the future. 
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